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Abstract. A general tensor eikonal method is proposed for solving wave equations of the optics
and acoustics of stratified anisotropic media in the case of non-commutation of the tensor eikonals.
Such an approach allows one to operate with electromagnetic and acoustic fields in inhomogeneous
anisotropic media without any division of them into partial waves and not referring to a particular
coordinate systems. The tensor eikonals which are determined by the polarization of waves are
involved in the evolution operators (propagators) and are expressed in terms of the normal refraction
tensors. These tensors are non-commutative in the general case and disentangling the evolution
operators is necessary, including ones for waves in isotropic media. Such disentangling is performed
with the use of known standard operator procedures. An example of the calculation of the photon
propagator is given for a stratified medium with the inhomogeneity profile ε(z) = a + b/z2.

1. Introduction

In recent years increasing attention has been paid to the investigations of topological phases
[1], photonic and phononic crystals [2], spatial solitons [3], the topology of light traps and
mirages [4]. In numerous works on these problems, the important role of the angular momenta
of photons and phonons has been revealed, and the relationships between ray and wave notions
used in geometrical optics have been pointed out [5]. There is a vast literature on the different
approaches in geometrical optics. In one form or another, geometro-optical constructions were
taken up by Hamilton, Bruns, Sommerfeld, Debye, Runge, de Broglie, Keller and others [6].
The question is one of asymptotic constructions on the basis of wave theory. Despite the great
variety of different methods in this field there has been very little work which has allowed
a comparatively simple evaluation of the role of angular momenta in the ray representation.
For instance, in the book by Marcuse [7] it is asserted that photon spin is neglected in the
ideas of geometrical optics. This pertains naturally to constructions of scalar geometrical
optics [6, 8]. Earlier in [9] a tensor generalization of scalar eikonals in optics and acoustics of
stratified media was given. In these works, however, non-commutation of the tensor eikonal
was not taken into account, and the evolution operators which characterize the field variation
in three-dimensional space were presented as ordinary exponentials. Meanwhile such non-
commutation takes place in the overwhelming majority of practically important cases and is
worthy of separate consideration. In this paper we expound a calculus of the generalized
tensor eikonals for oblique incidence of photons or phonons on a stratified medium when
non-commutation occurs. In so doing, we rely on the mathematical work of Baker [10] which
have, up to now, stimulated study on Lie groups [11]. We carry out a consideration in terms
of the operators of the spatial evolution of the optical and acoustic fields with the use of an
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opto-acoustic analogy [12]. Under certain conditions these operators form continuous Lie
groups, the generators of which are photon and phonon eikonals. In quantum electrodynamics
(QED) there are many forms of representation of propagators for different particles. In the
literature these propagators are called Green operators, Cauchy operators and shift operators
[13]. In this paper we try to emphasize the group nature of the operators indicated and for
understandable reasons call the corresponding groups eikonal groups. We are of one mind with
Brodsky and Drell concerning the charming simplicity of Maxwell’s equations formulated
using field intensities (not potentials) [13] not only for the purposes of QED but for classical
and semiclassical constructions [12]. Maxwell’s equations themselves point to the possibility
of operator generalization of the main wave characteristics such as refractive index, frequency,
impedance and so on. Eikonal are also among such characteristics.

This paper consists of an introduction, a main part (sections 2–4) and a conclusion.
In section 2 we consider the general case of the oblique incidence of electromagnetic or
acoustic waves on stratified anisotropic media and describe a procedure for tensor eikonal
approximations. Such a procedure generalizes the scalar eikonal approximations and
consistently takes into account not only wave polarizations but electromagnetic and acoustic
fields as a whole without their division into partial waves. It demonstrates the main difference of
our approach from others where partial waves are considered separately. In section 3 we apply
the results obtained to isotropic stratified media. We show that even in this case the eikonal
tensors and the normal refraction tensors associated with them do not commute when taken at
different layers. We propose a procedure for calculation of the electromagnetic fields in such
media using operator methods [15]. There is comparatively small number of inhomogeneity
profiles for stratified media leading to exact solutions of the wave equations [14]. In section 4
we take, as an example, a dielectric permittivity profile ε(z) = a +b/z2 and compare the exact
solution of the original wave equation with its operator eikonal solution at oblique incidence.
It is shown that at certain angles of incidence the tensor geometro-optical solutions coincide
with the exact ones already in the zeroth-order approximation.

2. Tensor eikonal equations for a stratified general anisotropic medium

Let us consider a monochromatic wave (electromagnetic or elastic) with time dependence
exp(−iωt) propagating in a linear inhomogeneous anisotropic medium. In this case the field
distribution F (r) in the medium as a function of the radius vector r of the observation point,
can be described by the following generalized Helmholtz equation:

∂

∂rb

(
σabcd

∂

∂rc
Fd

)
− g2νadFd = 0. (1)

In (1) depending on whether an electromagnetic or elastic wave is considered, the vector
F (r) characterizes either a magnetic field intensity H(r) or a displacement u(r). For
electromagnetic waves σabcd = eabf ε

−1
fg egcd , g = k = ω/c, νab = µab with the constitutive

equations assumed to be D = ε(r)E, B = µ(r)H (ε is the dielectric permittivity tensor, µ
is the magnetic permeability tensor, c is the speed of light in vacuum, eabc is the Levi-Civita
pseudotensor) and for elastic waves σabcd = cabcd are elastic stiffnesses, g = ω, νab = −ρδab,
ρ is the density of the medium and δab is the Kronecker delta. Summation is over repeated
indices.

If the medium is stratified in the z-direction then the wave stimulated under oblique
incidence is described with the equation

F (r) = F (z) exp(igb · r). (2)
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In formula (2) the field amplitude F (r) depends on both the longitudinal coordinate z = q · r

along the stratification direction (q is an unit normal vector co-directed with the z-axis) and
transverse coordinate x along the b-direction. The vector b is perpendicular to the unit vector q

and is parallel to the stratification planes. It is highly convenient to use the vector b in solving
a series of problems of optics and acoustics with oblique incidence of waves. The geometrical
meaning of b is revealed to its full extent on consideration of the refraction and reflection
of waves on the plane interfaces [16]. b2 is determined by the incidence angle. At normal
incidence b = 0 (b2 = 0) and therefore the field amplitude F (r) depends on the z coordinate
only.

For the wave of type (2) equation (1) can be rewritten in index-free notation as the
following:

−g2(B + ν)F (z) + ig

[
dC

dz
F (z) + (C + S)

dF (z)

dz

]
+

dQ

dz

dF (z)

dz
+Q

d2F (z)

dz2
= 0. (3)

In (3) we have introduced the tensors B,Q, C and S,

Bab = bcσacdbbd Qab = qcσacdbqd Cab = qcσacdbbd Sab = bcσacdbqd (4)

and, for example, (dC/dz)F (z) denotes in index notation (dCab/dz)Fb(z).
For a homogeneous anisotropic medium the solution of equation (3) can be represented

in evolution form [17]

F (z) = exp(igNz)F (z0) (5)

where N is the second-rank tensor called the normal refraction tensor and F (z0) is the
amplitude in the reference point z0 which is assumed to be given.

It is known that the introduction of eikonal of waves in the case of inhomogeneous isotropic
media is based on the solution with a scalar phase function in the exponent. Making the
transition to inhomogeneous anisotropic media it is natural to use the solution (5) with the
tensor phases. If for typical wavelengths the properties of the medium change to a small
extent, then the corresponding solution of the wave equation should have little difference in
comparison with (5). Therefore, approximate solutions will have a form analogous to (5), but
with variable tensors N and vectors of amplitudes. Relying on (5) we shall search for the
solution of equation (3) in the form

F (z) ∼=  zz0
[igN(z)]A(z) =

∫ z
!

z0

[1 + igN(z′) dz′]A(z) (6)

where A(z) is a slowly varying amplitude. The symbol  zz0
[igN(z)] denotes a matrizant

(multiplicative integral, integral exponent) [18] and generalizes a tensor exponential. The
specific nature of the multiplicative integral is to a great extent connected with the non-
commutation of the operators N(z). If operators N(z′) and N(z′′) are permutable at two
arbitrary points z′ and z′′: N(z′)N(z′′) = N(z′′)N(z′); z′, z′′ ∈ [z0, z], then the multiplicative
integral reduces to the operator exp[ig

∫ z
z0
N(z) dz]. However, in the general case of non-

commutation we introduce the notation

#(z) =
∫ z

z0

Nz(z) dz. (7)

The lower index of the operator N denotes ordering of operators. If #(z) (7) is substituted
in an exponent and this exponent is expanded into a series then in each term of the series
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NzNz′ = N(z)N(z′) when z > z′ and NzNz′ = N(z′)N(z) when z′ > z. The operator
provided with the larger index acts later [19]. Then we can rewrite (6) as follows:

F (z) = exp[ig#(z)]A(z). (8)

We shall call the tensor function #(z) the eikonal tensor for the field F (z).
Now let us expand the amplitude A(z) into power series of i/g (a Debye expansion),

assuming that the series is convergent,

A(z) = A0(z) +
i

g
A1(z) +

(
i

g

)2

A2(z) . . . . (9)

Substituting (8) and (9) in (3) and comparing the coefficients at the same degrees of i/g, in the
zeroth-order approximation we obtain the equation

[QN2 + (S + C)N + B + ν]F0(z) = 0. (10)

Note that the equality (10) should hold for any z. Therefore, from (10) the tensor equation for
finding the eikonal takes the form

QN2 + (S + C)N + B + ν = 0. (11)

For homogeneous media the tensor N in (11) is constant and it coincides with the normal
refraction tensor [17]. The general expressions (10) and (11) are obtained with the supposition
that tensors N taken at the different medium layers do not commute.

For higher-order approximations we have recurrence relations:

[QN2 + (S + C)N + B + ν] zz0
[igN(z)]Aj+1(z)− d(QN + C)

dz
 zz0

[igN(z)]Aj (z)

−(2QN + S + C) zz0
[igN(z)]

dAj (z)

dz
+Q zz0

[igN(z)]
d2Aj−1(z)

dz2

+
dQ

dz
 zz0

[igN(z)]
dAj−1(z)

dz
= 0 (12)

where j = 0, 1, 2, . . . ; Aj = 0 at j < 0.
The solution of (12) can be expressed in terms of multiplicative integrals

Aj (z) =  zz0
[G(z)]Aj (z0) +

∫ z

z0

K(z, z′)H(z′)Aj−1(z
′) dz′ (13)

where N(z) is supposed to be found from (11),

G(z) = − { zz0
[igN(z)]

}−1
(2QN + S + C)−1 d

dz
(QN + C) zz0

[igN(z)]

and

H(z) = {
 zz0

[igN(z)]
}−1

(2QN + S + C)−1

{
dQ

dz
 zz0

[igN(z)]
d

dz
+Q zz0

[igN(z)]
d2

dz2

}

K(z, z′) =  zz0
[G(z)] z0

z′ [G(z
′)]

{
 zz0

[igN(z)]
}−1 = exp

[
ig
∫ z0

z

Nz(z) dz

]
.

The relations obtained above enable consideration of the spatial evolution of the amplitude
F (z) of the magnetic field or displacement in the tensor geometro-optical approximation. For
electromagnetic waves the electric field E(z) can be restored from the known H(z) using
Maxwell’s equations.

Below we find the tensor eikonal for electromagnetic waves at oblique incidence to
an isotropic stratified medium and disentangle the evolution operator in the zeroth-order
approximation.
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3. Non-Abelian eikonal algebras for stratified isotropic media

The general expressions (6), (10) and (11) demonstrate that the eikonal is a tensor value even in
isotropic media. We apply these expressions in the zeroth-order approximation to the case of
oblique incidence of an electromagnetic wave on a stratified isotropic medium. It appears that
even in this case the eikonals taken at different points in the medium will form a field of non-
commuting tensors and in the geometro-optical approximation it is necessary to disentangle
the evolution operator.

Let an isotropic stratified medium be described by the scalar permittivity ε = ε(z) and the
scalar permeability µ = µ(z). The tensor σabcd included in the Helmholtz equation (1) takes
the form

σabcd = 1

ε
eabiecdi = 1

ε
(δacδbd − δadδbc). (14)

Substituting expression (14) in formulae (4), for the tensors B, Q, S, C we find in index-free
notation [16]

B = 1

ε
(b ⊗ b − b2) Q = 1

ε
(q ⊗ q − 1) = −1

ε
I

S = 1

ε
q ⊗ b C = 1

ε
b ⊗ q

(15)

where the vectors b and q introduced in section 2 are used (see formulae (2) and (4)), b⊗b, q⊗q,
q⊗b, b⊗q are dyads, I = 1−q⊗q is the projective operator on a plane which is perpendicular
to the vector q. Notes of the type b ⊗ b − b2 should be understood as b ⊗ b − b21. Having
substituted (15) into (11), we obtain the following square equation for the tensor N = N(z):

IN2 − (b ⊗ q + q ⊗ b)N − ξ − b ⊗ b = 0 (16)

where the designation ξ(z) = ε(z)µ(z) − b2 is introduced. We search for solutions of this
equation in the form

N = αb ⊗ b + βb ⊗ q + γ q ⊗ b + ηq ⊗ q + λa ⊗ a (17)

where a = [bq] is a vector product of vectors b and q. Substitution of (17) into (16) with
subsequent equating factors at identical dyads results in a system of algebraic equations for
the unknown variables α, β, γ , η, λ. Its solution gives

N(z) = ± 1

b2

√
ξ(z)a ⊗ a − 1

b2
ξ(z)b ⊗ q − q ⊗ b. (18)

It is easy to show that in the general case the tensors N(z′) and N(z′′) taken at the not
coinciding arguments do not commute (an exception is the case of the homogeneous medium
when ε, µ and ξ do not depend on z). It means that the tensor eikonal #(z) (7) cannot
be presented in the form of an ordinary integral

∫ z
z0
N(z′) dz′, and the field solutions in the

zeroth-order approximation are described by the formula

H0(z) =  zz0
[ikN(z)]H(z0) (19)

where zz0
[ikN(z)] = ∫ z!

z0
[1 + ikN(z′) dz′] is the evolution operator and H(z0) is the vector of

the magnetic field strength, which is assumed to be given at a reference point with coordinate
z0.
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We shall calculate zz0
[ikN(z)] following the standard Wei–Norman procedure [15]. The

multiplicative integral  zz0
[ikN(z)] satisfies the operator differential equation

d zz0

dz
[ zz0

]−1 = ikN(z) (20)

under the condition  z0
z0

= 1. Equation (20) follows from the fact that  zz0
[ikN(z)] can be

represented in the form (1 + ikN(zn)3z)(1 + ikN(zn−1)3z) . . . (1 + ikN(z0)3z) at 3z → 0
where zi+1 = zi + 3z, zn = z. So if we differentiate  zz0

with respect z this is equivalent to
multiplication of zz0

by ikN(z) from the left: d zz0
/dz = ikN(z) zz0

[18]. Now we introduce
the operators

L1 = b ⊗ q L2 = q ⊗ b L3 = b ⊗ b − b2q ⊗ q L4 = a ⊗ a. (21)

Then we can rewrite the tensor N(z) (18) in the form

N(z) = − 1

b2
ξ(z)L1 − L2 ± 1

b2

√
ξ(z)L4. (22)

The operatorsL1,L2,L3,L4 (21) and their linear combinations form a non-Abelian Lie algebra
with the commutation rules

[L1, L2] = L3 [L1, L3] = −2b2L1 [L2, L3] = 2b2L2

[L1, L4] = [L2, L4] = [L3, L4] = 0.
(23)

We shall present  zz0
[ikN(z)] as an expansion

 zz0
[ikN(z)] = exp[ig1(z)L1] exp[ig2(z)L2] exp[g3(z)L3] exp[ig4(z)L4] (24)

where g1(z), g2(z), g3(z) and g4(z) are some functions of the variable z, k = ω/c. Then
the left-hand part of equation (20) using the commutation rules (23) and the Baker–Hausdorff
formula [10]

eXY e−X = Y + [X, Y ] +
1

2!
[X, [X, Y ]] +

1

3!
[X, [X, [X, Y ]]] + · · ·

can be written as the following:

d zz0

dz
[ zz0

]−1 = i
dg1

dz
L1 + i

dg4

dz
L4 + i

dg2

dz
(b2g2

1L1 + L2 + ig1L3)

+
dg3

dz
[2ib2g1(b

2g1g2 − 1)L1 + 2ib2g2L2 + (1 − 2b2g1g2)L3]. (25)

We shall substitute (22) and (25) into (20) and equate factors for identical operators. Then we
obtain the system of nonlinear differential equations of first order,

dg1

dz
= − k

b2
ξ(z)− kb2g2

1
dg3

dz
= −kg1

dg2

dz
= k(2b2g1g2 − 1)

dg4

dz
= ± k

b2

√
ξ(z)

(26)

under the initial conditions g1(z0) = g2(z0) = g3(z0) = g4(z0) = 0. The first equation of the
system is the Riccati equation concerning the function g1(z). It can be solved in quadrature
only for some special functions ξ = ξ(z) (see section 4). If an explicit form g1 = g1(z) of
the solution of this equation is found, the solutions g3 = g3(z) and g2 = g2(z) are under the
formulae

g3(z) = −k
∫ z

z0

g1(z
′) dz′ g2(z) = −k

∫ z

z0

exp[−2b2(g3(z)− g3(z
′))] dz′. (27)
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Solutions of the fourth equation of the system (26) are

g4(z) = ± k

b2

∫ z

z0

√
ξ(z′) dz′ = ± k

b2

∫ z

z0

√
ε(z′)µ(z′)− b2 dz′. (28)

Now expanding the exponents in (24) under ordinary rules and taking into account that
(L1)

2 = (L2)
2 = 0, (L3)

2 = b2(b ⊗ b + b2q ⊗ q) = (b2)
2
I , (L4)

2 = b2a ⊗ a = b2L4 we
arrive at the following formula for the operator zz0

[ikN(z)] as a linear combination of dyads:

 zz0
[ikN(z)] = 1

b2
exp(g3b

2)(1 − b2g1g2)b ⊗ b

+ig1 exp(−g3b
2)b ⊗ q + ig2 exp(g3b

2)q ⊗ b

+ exp(−g3b
2)q ⊗ q +

1

b2
exp(ig4b

2)a ⊗ a. (29)

Thus the expression (29) together with the first equation of the system (26) and formulae (27)
and (28) completely determines the evolution operator  zz0

[ikN(z)] involved in (19). The
relations obtained above can be applied for calculations of electromagnetic fields in the tensor
geometro-optical approximation if the functional dependences ε = ε(z) and µ = µ(z) are
given in an explicit form.

4. Example of tensor eikonal approximations and comparison with the exact solution

Now we apply the general results of sections 2 and 3 for electromagnetic waves propagating
in an inhomogeneous isotropic medium with the profile

ε(z) = a +
b

z2
µ(z) = 1 (30)

where a and b are some constant quantities which characterize the medium. Let suppose that
the parameter b2 associated with oblique incidence of the wave coincides with a (i.e. the angle
of incidence is fixed and determined by the parameter a). We make such an assumption to
obtain a simpler solution of equations (26) as far as possible and then compare it with an
exact solution of Maxwell’s equations. Really, in this case the quantity ξ(z) becomes equal to
b/z2 and the first equation of system (26) (the Riccati equation) allows an analytical solution.
Thereby other functions g2(z), g3(z), g4(z) and the evolution operator in the zeroth-order
approximation (29) can also be represented in analytical form. It turns out that for the waves
polarized in the plane of incidence (in the plane passing through vectors b and q) already in a
zeroth-order approximation will coincide with the exact solution of Maxwell’s equations for
the profile (30).

The Riccati equation for g1(z)

dg1

dz
= − kb

az2
− kag2

1 (31)

has the partial solution g1(z) = d/z. Substituting it into (31) we find that

d = 1

2ka
(1 ±

√
1 − 4k2b). (32)

Proceeding with the partial solution obtained we construct the general solution in the form

g1(z) = d

z
+

1

f (z)
(33)
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where f (z) is some function to be determined. Substituting (33) in (31) and solving equation
(31) for f (z), using (32) we arrive at an expression for g1(z)

g1(z) = 1

z

[
d +

(
ka

1 − 2γ
+ Cz2γ−1

)−1
]

(34)

where the designation γ = kad is introduced and C is a constant of integration. Under the
initial condition g1(z0) = 0 the final expression for the function g1(z) is

g1(z) = d(1 − γ )
γ z

[
1 +

(1 − 2γ )(z/z0)
2γ−1

γ − (1 − γ )(z/z0)2γ−1

]
. (35)

Using formulae (27) and (28) we find in the succession functions g3(z), g2(z) and g4(z) under
the initial conditions g3(z0) = g2(z0) = g4(z0) = 0

g3(z) = −kd
γ

ln

{
(z/z0)

1−γ

2γ − 1

[
γ − (1 − γ )(z/z0)

2γ−1]}

g2(z) = kz0(z/z0)
2(1−γ )

(2γ − 1)2
[
1 − (z/z0)

2γ−1] [γ − (1 − γ )(z/z0)
2γ−1] (36)

g4(z) = ±k
√
b

a
ln
z

z0
.

Then substituting the functions gi(z), i = 1, . . . , 4 (35) and (36) in (29) after uncomplicated
transformations we obtain the evolution operator  zz0

[ikN(z)] in the zeroth-order geometro-
optical approximation,

 zz0
[ikN(z)] = 1

(2γ − 1)a

[
(γ − 1)(z/z0)

−γ + γ (z/z0)
γ−1] b ⊗ b

+
ikb

(2γ − 1)z0a

[
(z/z0)

−γ − (z/z0)
γ−1] b ⊗ q

+
γ (γ − 1)z0

ikb(2γ − 1)

[
(z/z0)

−(γ−1) − (z/z0)
γ
]
q ⊗ b

+
1

2γ − 1

[
γ (z/z0)

−(γ−1) + (γ − 1)(z/z0)
γ
]
q ⊗ q

+
1

a
{cos[k

√
b ln(z/z0)] ± i sin[k

√
b ln(z/z0)]}a ⊗ a. (37)

Note that value of  zz0
[ikN(z)] does not depend on whether the upper or lower sign is chosen

in formula (32) for the quantity d which is involved in (37) through the parameter γ = kad.
In reality, a change of sign in (32) from negative to positive (or vice versa) leads to the
replacements γ −→ −(γ − 1), 2γ − 1 −→ −(2γ − 1) in (37) which do not change the
value of  zz0

[ikN(z)]. The evolution operator is expressed in terms of power functions of
z/z0, exponents of a power being complex quantities with the condition k2b � 1. This
condition determines the applicability of the geometro-optical approximation in the case under
consideration.

Now we turn to an exact solution for the profile ε(z) = a + (b/z2). The dependence of the
tangential components of the magnetic and electric field for a stratified anisotropic dielectric
medium is described by a matrix system of differential equations

d

dz

(
Hτ

[qE]

)
= ikM(z)

(
Hτ

[qE]

)
(38)
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with the matrix M(z) having a block structure [17]

M(z) =
(

q×εq ⊗ a/qεq −b ⊗ b + I ε̃I/qεq

I − a ⊗ a/qεq −a ⊗ qεq×/qεq

)
(39)

where Hτ = IH , q× is the tensor dual to vector q, a tilde denotes a transposed tensor and a bar
denotes an adjugate tensor [16]. Complete three-dimensional vectors H and E are restored
from their tangential components according to the formula(

H

E

)
= V(z)

(
Hτ

[qE]

)
(40)

where

V(z) =
(

I −q ⊗ a

q ⊗ a/qεq −q× + q ⊗ qεq×/qεq

)
. (41)

In (39) and (41) ε = ε(z) is the dielectric permittivity tensor of the anisotropic medium. For
the isotropic medium ε(z) is considered as a scalar quantity and the matrices M(z) (39) and
V(z) (41) take the form

M(z) =
(

0 εI − b ⊗ b

I − (1/ε)a ⊗ a 0

)
V(z) =

(
I −q ⊗ a

(1/ε)q ⊗ a −q×

)
. (42)

Let the wave which propagates a stratified isotropic medium be polarized in the plane
of incidence: Hτ (z) = Hτ(z)b0, [qE](z) = Eτ (z)b0, where the unit vector b0 = b/

√
b2 is

co-directed with b, andHτ andEτ are scalar tangential components of H and E, respectively.
Then for the profile ε(z) = a + b/z2, a = b2 from the system (38) with the matrix M(z) (42),
the following two scalar equations for Hτ and Eτ can be found

dHτ
dz

= ik
b

z2
Eτ

dEτ
dz

= ikHτ . (43)

Their solution is

Hτ = C1(z/z0)
−γ + C2(z/z0)

γ−1

Eτ = z0

ikb

[−C1γ (z/z0)
−(γ−1) + C2(γ − 1)(z/z0)

γ
] (44)

where C1 and C2 are constants of integration, γ = 1
2 (1 − √

1 − 4k2b) is the parameter
introduced earlier. From (40) with the use of V(z) (42), we determine the vector H of the
magnetic field intensity

H(z) = Hτb0 −
√

b2Eτq

or

H(z) = [
C1(z/z0)

−γ + C2(z/z0)
γ−1] b0

−z0
√
a

ikb

[−C1γ (z/z0)
−(γ−1) + C2(γ − 1)(z/z0)

γ
]
q. (45)

The constantsC1 andC2 in (45) depend on the initial vector H(z0) taken at the reference point
z = z0. If H(z0) ≡ H (1)(z0) = b0 then C1 = (γ − 1)/(2γ − 1), C2 = γ /(2γ − 1) and

H (1)(z) = 1

2γ − 1

[
(γ − 1)(z/z0)

−γ + γ (z/z0)
γ−1] b0

−z0
√
aγ (γ − 1)

ikb(2γ − 1)

[−(z/z0)
−(γ−1) + (z/z0)

γ
]
q. (46)



3250 L M Barkovsky and A N Furs

The second case is H(z0) ≡ H (2)(z0) = q with C1 = −C2 = −ikb/
[
(2γ − 1)

√
az0

]
and

H (2)(z) = ikb

z0
√
a(2γ − 1)

[−(z/z0)
γ−1 + (z/z0)

−γ ] b0

+
1

2γ − 1

[
γ (z/z0)

−(γ−1) + (γ − 1)(z/z0)
γ
]
q. (47)

Any arbitrary initial vector H(z0) situated in the (b, q)-plane can be decomposed as H(z0) =
k1b0 + k2q and in view of the linearity of the basic equations the dependence H(z) on the
coordinate z in this case is given by H(z) = k1H

(1)(z)+k2H
(2)(z), where H (1)(z) and H (2)(z)

are determined using formulae (46) and (47), respectively. On the other hand, we can represent
this dependence of H(z) in the evolutional form H(z) =  zz0

H(z0) =  zz0
(k1b0 +k2q), where

 zz0
is the exact evolution operator. It is not difficult to see that the evolution operator  zz0

constructed in this way with the use of (46) and (47) coincides completely with the geometro-
optical operator (37) and thus the zeroth-order approximation of tensor geometrical optics
already leads to an exact solution for the profile under consideration. Further investigation is
needed to establish the first correction given by formula (13). It may well be that this correction
is not equal to zero.

5. Conclusion

Although they are analogues of the corresponding scalar quantities, the tensor eikonal and the
normal refraction tensor contain considerably more information. This information concerns not
only the material parameters of the inhomogeneous anisotropic medium but also polarization
characteristics of the eigenwaves in such a medium. In making the transition to the generalized
tensor quantities we encounter the problem of non-commutation of the normal refraction
tensors N , and as a result disentangling the evolution operator (propagator) is needed. Like
matrix algebras, the algebras of the normal refraction tensors are non-Abelian. The example
of section 4 points to the complex connection between the fundamental characteristics of
photons such as normal, ray, spin, wave and geometro-optical solutions for stratified media.
The formulae obtained are well correlated to the conclusions and critical notes expressed in [13]
in connection with the gauge of radiation and quantization of the electromagnetic field. The
method proposed here enables not only an approximate calculation of the evolution operators,
but gives a method for transition from the primal problem to its inverse.
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